История космологии

Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.

В китайской космологии считалось, что Земля — своего рода чаша, прикрытая небом, состоящая из полусфер, вращающихся на очень низком расстоянии от Земли.

Новаторский характер носит космология Николая Кузанского, изложенная в трактате Об учёном незнании. Он предполагал материальное единство Вселенной и считал Землю одной из планет, также совершающей движение; небесные тела населены, как и наша Земля, причём каждый наблюдатель во Вселенной с равным основанием может считать себя неподвижным. По его мнению, Вселенная безгранична, но конечна, поскольку бесконечность может быть свойственна одному только Богу. Вместе с тем, у Кузанца сохраняются многие элементы средневековой космологии, в том числе вера в существование небесных сфер, включая внешюю из них — сферу неподвижных звёзд. Однако эти «сферы» не являются абсолютно круглыми, их вращение не является равномерным, оси вращения не занимают фиксированного положения в пространстве. Вследствие этого у мира нет абсолютного центра и чёткой границы (вероятно, именно в этом смысле нужно понимать тезис Кузанца о безграничности Вселенной)[5].

Первая половина XVI века отмечена появлением новой, гелиоцентрической системы мира Николая Коперника. В центр мира Коперник поместил Солнце, вокруг которого вращались планеты (в числе которых и Земля, совершавшая к тому же ещё и вращение вокруг оси). Вселенную Коперник по-прежнему считал ограниченной сферой неподвижных звёзд; по-видимому, сохранялась у него и вера в существование небесных сфер[6].

Модификацией системы Коперника была система Томаса Диггеса, в которой звёзды располагаются не на одной сфере, а на различных расстояниях от Земли до бесконечности. Некоторые философы (Франческо Патрици, Ян Ессенский) заимствовали только один элемент учения Коперника — вращение Земли вокруг оси, также считая звёзды считались разбросанными во Вселенной до бесконечности. Воззрения этих мыслителей несут на себе следы влияния герметизма, поскольку область Вселенной за пределами Солнечной системы считалась ими нематериальным миром, местом обитания Бога и ангелов[7].

На данный момент (2011 год) основные усилия астрономов, работающих в наблюдательной космологии, устремлены, в основном, в две области:
историю развития Вселенной: от ранних этапов и до наших дней;
космологическую шкалу расстояний и связанное с ней явление расширения Вселенной.

Почти вся информация о Вселенной, известная на данный момент — косвенна. Как правило, сначала делаются некие предположения, а потом они проверяются.

На данный момент лишь следующие факты можно считать твёрдо установленными:

Звёздная астрономия

Планетарная туманность Муравья — Mz3. Выброс газа из умирающей центральной звезды показывает симметричную модель, в отличие от хаотических образов обычных взрывов.
Основная статья: Звезда

Изучение звёзд и звёздной эволюции имеет фундаментальное значение для нашего понимания Вселенной. Астрофизика звезд развивалась на основе наблюдений и теоретического понимания, а сейчас и с помощью компьютерного моделирования.

Формирование звезд происходит в областях плотной пыли и газа, известных как гигантские молекулярные облака. Если происходит дестабилизация, то фрагменты облака могут сжаться под воздействием гравитации и сформировать протозвезду. Достаточно плотные и горячие области вызовут термоядерные реакции, таким образом начнется главная последовательность звезды.[2]

Почти все элементы, более тяжелые чем водород и гелий, создаются внутри ядра звезды.

Телескоп "Кеплер" нашел сотни внесолнечных планет

Еще каких-нибудь четверть века назад астрономы могли только предполагать, что во Вселенной есть другие планеты - оснований считать Солнечную систему уникальной у ученых не было, но не было и фактических доказательств наличия планет у других звезд. Первое свидетельство того, что в космосе есть больше одной звезды, обладающей планетами, было получено в 1988 году, а окончательно подтвердить гипотезу о существовании внесолнечных планет ученые смогли еще через 14 лет.


Столь медленный прогресс в области поиска и изучения экзопланет (так специалисты называют планеты за пределами Солнечной системы) объясняется просто - эти объекты практически не испускают излучения и обнаружить их на фоне чрезвычайно яркого блеска звезд очень сложно. Именно поэтому основные методы обнаружения внесолнечных планет - косвенные.

Например, специалисты анализируют периодические сдвиги спектра звезды то в коротковолновую, то в длинноволновую области – такие колебания указывают, что вокруг звезды обращается планета, гравитация которой "оттаскивает" за собой излучение. Или же ученые отслеживают колебания самого светила - достаточно массивная планета может вызывать заметные изменения в положении звезды. Еще один вариант - наблюдение за колебаниями яркости звезды, происходящими из-за того, что между ней и наблюдателем проходит планета. Последний метод получил название транзитного.

С течением времени телескопы становились все более "зоркими", и в 2008 году астрономам впервые удалось непосредственно сфотографировать несколько экзопланет. В начале января 2010 года группа исследователей опубликовала не менее впечатляющие данные - ученые смогли напрямую получить спектр экзопланеты, при помощи которого можно узнать состав планеты и ее атмосферы. Этот результат тем более ценен, что авторы работали с наземными телескопами (а именно с массивом телескопов VLT). Наблюдения при помощи таких телескопов заметно осложняются из-за наличия атмосферы, которая искажает получаемые изображения.

Но по-настоящему новая эпоха в деле поиска экзопланет началась седьмого марта 2009 года, когда в космос был запущен телескоп "Кеплер". Он следует за нашей планетой, постепенно удаляясь от нее, а орбита телескопа, работающего по транзитному методу, подобрана так, что ни Луна, ни Солнце не попадают в его поле зрения. То есть "Кеплер" непрерывно "смотрит" на один и тот же участок неба между созвездиями Лебедя и Лиры и фиксирует изменения яркости находящихся там звезд. В общей сложности телескоп наблюдает около 4,5 миллиона светил.

"Кеплер" оснащен чрезвычайно чувствительной оптикой, способной фиксировать даже самые незначительные изменения яркости звезд, вызываемые прохождением по их диску планет небольших размеров (расчеты показывают, что телескоп может находить даже спутникиэкзопланет). Размер внесолнечных планет имеет очень большое значение для астрономов - у жизни земного типа нет шансов зародиться на крупных и тяжелых экзопланетах с колоссальной гравитацией (впрочем, не все большие планеты тяжелы - но об этом чуть ниже). До вывода на орбиту "Кеплера" астрономы находили, в основном огромные планеты, размер которых в несколько раз превосходил размеры Юпитера, и некоторые специалисты полагали, что во Вселенной в основном распространены именно гиганты.

Телескоп приступил к "потоковому" поиску экзопланет в мае 2009 года. Начиная с этого момента в прессе периодически появлялись сообщения о новых обнаруженных "Кеплером" планетах (преимущественно газовых гигантах), но более или менее систематизированный отчет появился в июне 2010 года.

В документе были перечислены результаты работы телескопа, полученные в течение первых 43 дней на орбите. За это время "Кеплер" обнаружил 706 экзопланет, но к июню специалисты обработали информацию только о 306 из них. Публикация отчета сопровождалась скандалом - одновременно с появлением документа один из астрономов, занимающийся анализом собранных "Кеплером" данных, якобы сообщил об обнаружении 140 планет земного типа. Позже оказалось, что ученый сказал не совсем это (а точнее, совсем не это) - подробнее о произошедшем недоразумении можно прочитать здесь. Дату следующего отчета назначили на февраль 2011 года.


ретьего февраля итоги анализа очередной порции переданной "Кеплером" информации былиопубликованы в авторитетном научном журнале Nature. Вместе с новыми данными общее число найденных телескопом планет возросло до 1235. Эти планеты обращаются вокруг 997 звезд, удаленных от Солнечной системы на расстояние от 500 световых лет до 3 тысяч световых лет.

Размер 68 обнаруженных планет сравним с размером Земли, а 288 относятся к классу так называемых Суперземель (то есть они больше нашей планеты, но существенно меньше газовых гигантов вроде Юпитера или Сатурна). Еще 662 планеты по диаметру сравнимы с Нептуном, 165 - с Юпитером, а 19 из найденных небесных тел больше самой крупной планеты Солнечной системы.

Около полусотни новых планет интересуют астрономов особо - 54 объекта располагаются в так называемой зоне обитаемости своих звезд. На планетах, располагающихся внутри зоны обитаемости, может присутствовать жидкая вода - необходимое условие для возникновения жизни земного типа. У разных типов звезд зона обитаемости находится на различном расстоянии - например, для более горячих, чем Солнце, светил она будет располагаться дальше, чем зона обитаемости нашей звезды. Из всех найденных телескопом планет в зоне обитаемости только пять по размеру сравнимы с Землей. Масса остальных находится в промежутке от двух масс Земли до юпитерианской массы и более. Но ставить крест на этих "здоровяках" пока рано - луны крупных планет из зоны обитаемости вполне могут оказаться пригодными для живых существ.

Еще одна интересная находка "Кеплера" - это планетная система похожей на Солнце звезды Kepler-11, удаленной от Земли на 2 тысячи световых лет. Вокруг этого светила возрастом восемь миллиардов лет обращаются сразу шесть планет - это самая большая из известных планетных систем, не считая Солнечной системы. Еще более исключительной систему Kepler-11 делает то, что все шесть планет расположены в одной плоскости. Вероятность найти такую систему, по оценкам некоторых астрономов, составляет 1 к 10 тысячам.

Орбиты пяти планет умещаются внутри орбиты Меркурия - они совершают один оборот вокруг Kepler-11 за период от 10 до 47 дней. Расстояние от звезды до шестой планеты вдвое меньше, чем дистанция от Земли до Солнца. По размеру все планеты в системе Kepler-11 обгоняют Землю - самая большая из них сравнима с Нептуном. При этом масса этих небесных тел относительно невелика для их диаметра. По плотности внешние планеты звезды Kepler-11 можно сравнить с зефиром (имеется в виду мягкий тянущийся зефир, который в английском языке называется marshmallow) - они окружены очень плотной атмосферой из водорода и гелия, которая составляет до 20 процентов массы этих небесных тел. Атмосфера двух внутренних планет заметно тоньше.

Помимо системы Kepler-11 телескоп обнаружил еще одну систему из пяти планет, восемь - из четырех и более сотни систем, состоящих из двух и трех планет. Изучение многопланетных систем позволит ученым прояснить многие вопросы относительно формирования Солнечной системы. Кроме того, факт обнаружения "Кеплером" множества систем, состоящих более чем из одной планеты, указывает, что подобные системы весьма распространены во Вселенной.

Новые результаты, полученные телескопом, также подтверждают, что не являются редкостью и небольшие планеты, некоторые из которых могут оказаться вполне комфортными для живых существ. Более того, не исключено, что после завершения миссии "Кеплера" (планируется, что телескоп проработает 3,5 года) этот вывод можно будет делать еще более уверенно. Пока телескоп достоверно обнаруживает только те планеты, которые обращаются недалеко от своих звезд - за относительно небольшой промежуток времени они успевают сделать несколько оборотов вокруг светила и "подтвердить" свое существование. Через пару-тройку лет "Кеплер" сможет несколько раз "засечь" небольшие планеты, находящиеся на орбитах, сравнимых с орбитой Земли. И уже эти небесные тела станут объектом интенсивного поиска признаков жизни.

Ирина Якутенко,  Lenta.ru
Обнаруженна звезда одна из самых горячих в Галактике
Это, возможно, самая горячая звезда, известная астрономам. Температура ее поверхности составляет около 200 тыс. градусов, а, может быть, и больше.

NGC 6302 (другие обозначения — PK 349+1.1, ESO 392-PN5, она же туманность Жук, она же Бабочка) — планетарная туманность в созвездии Скорпион - один из самых любимых объектов астрономов. NGC6302 относится к классу планетарных туманностей, названных так за частое сходство с дисками планет, если смотреть на них в небольшие телескопы. По сути, это внешние слои старых и относительно небольших звезд, жизнь которых заканчивается не взрывом сверхновой, а более или менее спокойным сбросом оболочки в окружающее пространство. В центре этой оболочки остается так называемый белый карлик — звезда крохотная, но поначалу очень горячая (ведь она недавно была ядром звезды). Так, кстати, свою жизнь скорее всего закончит и Солнце.

В белых карликах ядерные реакции не идут, и от окончательного коллапса их удерживает чисто квантовый эффект — давление вырожденного электронного газа. В отсутствие ядерных реакций звезде остается лишь остывать, за миллиарды лет превращаясь в холодный и очень плотный звездный "труп” массой примерно с массу Солнца и размером где-то с диаметр Земли.

Однако прежде, чем остыть окончательно, белые карлики подсвечивают сброшенный прежде газ очень горячим излучением, то есть фотонами очень высокой энергии. Газ каскадом атомных превращений перерабатывает каждый такой фотон в десятки и сотни фотонов видимого диапазона. Это свечение и называется планетарной туманностью.

NGC6302 не только одна из самых красивых, но и одна из самых экстремальных планетарных туманностей. Характерную форму песочных часов сброшенному в космическое пространство газу наверняка придал плотный газопылевой бублик, окружающий оставшийся в центре объект.


Судя по скорости расширения оболочки, она была сброшена 2−2,5 тыс. лет назад (с поправкой на 3,5 тыс. лет, которые до нас летел свет от этого объекта), так что еще древние греки могли увидеть здесь не планетарную туманность, а не очень яркую (опять же из-за большого расстояния) красную звезду. За два с лишним тысячелетия оболочка расползлась почти на световой год в каждую сторону, так что сейчас туманность занимает на небе участок в пятую часть Луны в поперечнике. И что самое поразительное, она светится так, будто ее ионизуют фотоны, соответствующие температуре в сотни тысяч градусов.

Это излучение должен испускать центральный белый карлик Жука, однако увидеть его еще ни разу не удавалось — здесь слишком сильны фон свечения газа и поглощение света пылевым бубликом. Хотя несколько лет назад Микако Мацуура и ее коллеги смогли обнаружить вблизи центра Жука непонятный точечный объект с помощью радиотелескопа, он так и не получил признания как центральный белый карлик NGC6302. И, как теперь выясняется, совершенно правильно не получил — настоящее сердце космического Жука находится на 2,5 угловых секунды южнее.

Ученые также оценили возраст и массу белого карлика, вписав модель остывания таких объектов в полученные с помощью «Хаббла» данные. Масса оказалась около 0,64 массы Солнца, а возраст — примерно 2,2 тыс. лет, в превосходном соответствии с возрастом планетарной туманности.

Что особенно приятно, эту работу можно будет надежно проверить в течение ближайших лет. При такой безумной светимости и отсутствии ядерных реакций звезда быстро теряет запасенную в тепле энергию и должна быстро остывать и терять в блеске. По оценкам ученых, этот спад светимости должен составлять около 0,8−1% в год. Такую величину несложно измерить.

А если повезет, то со временем можно будет даже увидеть, как угасание расползается по планетарной туманности. В конце концов, чтобы добраться до края газового облака, свету требуется около года. Именно с такой задержкой яркость крыльев Жука реагирует на падение блеска его центральной звезды.

понятие древнегреческой философии и культуры, представление о природном мире как о пластически упорядоченном гармоническом целом. Противопоставлялся хаосу. Греки соединяли в понятии "космос" две функции - упорядочивающую и эстетическую.

Термин "космос" начинает употребляться в философском смысле уже в период становления первых философских школ Древней Греции. Использование этого понятия зафиксировано у Анаксимена, Пифагора, Анаксимандра, Гераклита, он широко употребляется Парменидом, Эмпедоклом, Анаксагором, Демокритом.

Платон в диалоге "Тимей" рассматривает космос как живой, соразмерный организм, обладающий разумной душой, а человека - как часть космоса. Здесь же Платон формулирует трудность в объяснении устройства космоса: он божественен, значит, все небесные тела должны двигаться равномерно по круговым орбитам, однако движение планет противоречит этому требованию. Эту проблему пыталиcь решить Евдокс и Гераклид Понтийский.

Аристотель выступил с критикой пифагорейского и платоновского учения о строении космоса, в частности, отказался от учения о космической душе, заменив ее космическим Умом. Геоцентрическая модель Аристотеля, доработанная в эллинистическую эпоху (Гиппархом, Птолемеем и др.), господствовала до XVI в.

Стоики, неоплатоники, схоласты, христианские богословы Средневековья также включили в свои философские концепции учение о космосе. Философы и ученые эпохи Возрождения (например, Коперник, Галилей, Кеплер) опирались на принципы античной космологии. В Новое время понятие "космос" вытесняется из научного употребления, заменяясь понятием "Вселенная".

Большинство древнегреческих учёных поддерживали геоцентрическую систему мира, согласно которой в центре Вселенной находится неподвижная шарообразная Земля, вокруг которой обращаются пять планет, Солнце и Луна. Предложенная Аристархом Самосским гелиоцентрическая система мира, по видимому, не получила поддержки большинства древнегреческих астрономов.

Мир считался ограниченным сферой неподвижных звёзд[1]. Иногда добавлялась ещё одна сфера, отвечающая за прецессию. Предметом споров был вопрос о том, что находится за пределами мира: перипатетики вслед за Аристотелем полагали, что вне мира нет ничего (ни материи, ни пространства), стоики считали, что там находится бесконечное пустое пространство, атомисты (Левкипп, Демокрит, Метродор, Эпикур, Лукреций) полагали, что за пределами нашего мира находятся другие миры. Особняком стоят взгляды Гераклида Понтийского, согласно которому звёзды являются далёкими мирами, включающими в себя землю и воздух. Атомисты и Гераклид полагали Вселенную бесконечной. На закате античности появилось религиозно-мистическое учение герметизм, согласно которому вне мира может находиться область нематериальных существ — духов[2].

Многие досократики полагали, что движением светил управляет гигантский вихрь, давший начало Вселенной. Oднaко после Аристотеля большинство античных астрономов считали, что планеты переносятся в своём движении материальными сферами, состоящими из особого небесного элемента — эфир, свойства которого не имеют ничего общего с элементами земли, воды, воздуха и огня, составляющих «подлунный мир». Широко было рапространено мнение о божественной природе небесных сфер или светил, их одушевлённости.

В Средние века в астрономии и философии как христианских, так и мусульманских стран доминировала космология Аристотеля, дополненная птолемеевой теорией движения планет, вместе с представлением о материальных небесных сферах. Некоторые философы XIII—XIV вв. считали, что бесконечно всемогущий Бог мог создать, помимо нашего, и другие миры; тем не менее, эта возможность считалась сугубо гипотетической: хотя Бог и мог создать другие миры, он не сделал этого. Некоторые философы (например, Томас Брадвардин и Николай Орем) считали, что за пределами нашего мира находится бесконечное пространство, служащее обителью Бога (модификация космологии герметистов, также полагавших внемировое пространство относящимся к духовной сфере.

Вселе́нная — фундаментальное понятие астрономии, строго не определяемое, включает в себя весь окружающий мир. На практике под Вселенной часто понимают часть материального мира, доступную изучению естественнонаучными методами. Вселенная как единое целое является предметом изучения раздела астрономии — космологии.

Такое определение включает в себя две ипостаси: умозрительная, философская, и нечто материальное, доступное наблюдениям в настоящее время или в обозримом будущем. Если автор различает эти ипостаси, то следуя традиции, первую называют Вселенной, а вторую — астрономической Вселенной или Метагалактикой (в последнее время этот термин практически вышел из употребления).

В историческом плане для обозначения «всего пространства» использовались различные слова, включая эквиваленты и варианты из различных языков, такие как «небесная сфера», «космос», «мир». Использовался также термин «макрокосмос», хотя он предназначен для определения систем большого масштаба, включая их подсистемы и части. Аналогично, слово «микрокосмос» используется для обозначения систем малого масштаба в составе гораздо большей системы, частью которой является исходная система.

Любое исследование, любое наблюдение, будь то наблюдение ребёнка за кошкой, физика — за тем, как раскалывается ядро атома, или астронома, ведущего наблюдения за далёкой-далёкой галактикой — всё это наблюдение за Вселенной, а если быть точным — за отдельными её частями. Эти части служат предметом изучения отдельных естественных наук, а Вселенной в максимально больших масштабах, и даже Вселенной как единым целым занимаются астрономия и космология. Именно эти аспекты знаний о Вселенной составляют

В русском языке слово Вселенная является унаследованным из старославянского языка (въсєлѥнаѩ)[5], где является калькой древнегреческого слова ойкумена[6] (др.-греч. οἰκουμένη), от слова οἰκέω, «населяю, обитаю» и в первом значении имело смысл лишь обитаемой части мира. Русское слово Вселенная поэтому родственно существительному «вселение» и лишь созвучно определительному местоимению «всё». Самое общее определение для «Вселенной» среди древнегреческих философов, начиная с пифагорейцев, было «το παν» (Всё), включавшее в себя как всю материю (το ολον), так и весь космос (το κενον).

Астроно́мия — наука о движении, строении и развитии небесных тел и их систем, вплоть до Вселенной в целом[1]. В частности, астрономия изучает Солнце, планеты Солнечной системы и их спутники, астероиды, кометы, метеориты, межпланетное вещество, звёзды и внесолнечные планеты (экзопланеты), туманности, межзвёздное вещество, галактики и их скопления, пульсары, квазары, чёрные дыры и многое другое.

Астрономия является одной из древнейших наук. Доисторические культуры оставили после себя такие астрономические артефакты как древнеегипетские монументы и Стоунхендж. А первые цивилизации вавилонян, греков, китайцев, индийцев и майя уже в своё время проводили методические наблюдения ночного небосвода. После изобретения телескопа, развитие астрономии, как современной науки, было значительно ускорено. Исторически, астрономия включала в себя астрометрию, навигацию по звёздам, наблюдательную астрономию, создание календарей, и даже астрологию. Профессиональная астрономия в наши дни часто рассматривается как синоним астрофизики.

В XX веке астрономия разделилась на две главные ветви: наблюдательную и теоретическую. Наблюдательная астрономия сфокусирована на получении данных из наблюдений небесных тел, которые затем анализируются с помощью основных законов физики. Теоретическая астрономия ориентирована на разработку компьютерных, математических или аналитических моделей для описания астрономических объектов и явлений. Эти две ветви дополняют друг друга: теоретическая астрономия ищет объяснения результатам наблюдений, а наблюдательная астрономия используется для подтверждения теоретических выводов и гипотез.

Яндекс.Метрика
Конструктор сайтов - uCoz